優秀作文|高中數學各板塊解題思想總結(分享10篇)
發表時間:2019-12-01高中數學各板塊解題思想總結(分享10篇)。
[1] 高中數學各板塊解題思想總結
在這里介紹這些方法,主要是幫助同學掌握在遇到應用題時,如何去思考,怎樣打開自己的智慧之門。這些方法都不是孤立的,在實際解題中,往往是兩種或三種方法同時用到,而且有許多問題,可以用這種方法分析,也可以用那種方法分析。問題在于掌握了各種方法后,可以隨著題目中的數量關系靈活運用,切不可死記硬背,機械地套用解題方法。
1.綜合法
從已知條件出發,根據數量關系先選擇兩個已知數量,提出可以解答的問題,然后把所求出的數量作為新的已知條件, 與其它的已知條件搭配,再提出可以解答的問題,這樣逐步推導,直到求出所要求的結果為止。這就是綜合法。在運用綜合法的過程中,把應用題的已知條件分解成可以依次解答的幾個簡單應用題。小學數學網
例1.
一個養雞場一月份運出肉雞13600只,二月份運出的肉雞是一月份的2倍,三月份運出的比前兩個月的總數少800只,三月份運出多少只?
綜合法的思路是:
算式:(13600+13600×2)-800
= (13600+27200)-800
=40800-800
=40000(只)
答:三月份運出40000只。
另解:
13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.
工廠有一堆煤,原計劃每天燒3噸,可以燒96天。由于改進燒煤方法,每天可節煤0.6噸,這樣可以比原計劃多燒幾天?
解答這道題,綜合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原計劃多燒24天。
華羅庚的退步解題方法
我國已故著名的數學家華羅庚爺爺出生在一個擺雜貨店的家庭,從小體弱多病,但他憑借自己一股堅強的毅力和崇高的追求,終于成為一代數學宗師。
少年時期的華羅庚就特別愛好數學,但數學成績并不突出。19歲那年,一篇出色的文章驚動了當時著名的數學家熊慶來。從此在熊慶來先生的引導下,走上了研究數學的道路。晚年為了國家經濟建設,把純粹數學推廣應用到工農業生產中,為祖國建設事業奮斗終生!
華爺爺悉心栽培年輕一代,讓青年數學家茁壯成兒使他們脫穎而出,工作之余還不忘給青多年朋友寫一些科普讀物。下面就是華羅庚爺爺曾經介紹給同學們的一個有趣的數學游戲:
有位老師,想辨別他的3個學生誰更聰明。他采用如下的方法:事先準備好3頂白帽子,2頂黑帽子,讓他們看到,然后,叫他們閉上眼睛,分別給戴上帽子,藏起剩下的2頂帽子,最后,叫他們睜開眼,看著別人的帽子,說出自己所戴帽子的顏色。
3個學生互相看了看,都躊躇了一會,并異口同聲地說出自己戴的是白帽子。
聰明的小讀者,想想看,他們是怎么知道帽子顏色的呢?“
為了解決上面的伺題,我們先考慮“2人1頂黑帽,2頂白帽”問題。因為,黑帽只有1頂,我戴了,對方立刻會說自己戴的是白帽。但他躊躇了一會,可見我戴的是白帽。
這樣,“3人2頂黑帽,3頂白帽”的問題也就容易解決了。假設我戴的是黑帽子,則他們2人就變成“2人1頂黑帽,2頂白帽”問題,他們可以立刻回答出來,但他們都躊躇了一會,這就說明,我戴的是白帽子,3人經過同樣的思考,于是,都推出自己戴的是白帽子。
看到這里。同學們可能會拍手稱妙吧。后來,華爺爺還將原來的問題復雜化,“n個人,n-1頂黑帽子,若干(不少于n)頂白帽子”的問題怎樣解決呢?運用同樣的方法,便可迎刃而解。他并告誡我們:復雜的問題要善于“退”,足夠地“退”,“退”到最原始而不失去重要性的地方,是學好數學的一個訣竊。
對數簡史
對數是中學初等數學中的重要內容,那么當初是誰首創“對數”這種高級運算的呢?在數學史上,一般認為對數的發明者是十六世紀末到十七世紀初的蘇格蘭數學家──納皮爾(Napier,1550-1617年)男爵。
在納皮爾所處的年代,哥白尼的“太陽中心說”剛剛開始流行,這導致天文學成為當時的熱門學科??墒怯捎诋敃r常量數學的局限性,天文學家們不得不花費很大的精力去計算那些繁雜的“天文數字”,因此浪費了若干年甚至畢生的寶貴時間。納皮爾也是當時的一位天文愛好者,為了簡化計算,他多年潛心研究大數字的計算技術,終于獨立發明了對數。
當然,納皮爾所發明的對數,在形式上與現代數學中的對數理論并不完全一樣。在納皮爾那個時代,“指數”這個概念還尚未形成,因此納皮爾并不是像現行代數課本中那樣,通過指數來引出對數,而是通過研究直線運動得出對數概念的。
那么,當時納皮爾所發明的對數運算,是怎么一回事呢?在那個時代,計算多位數之間的乘積,還是十分復雜的運算,因此納皮爾首先發明了一種計算特殊多位數之間乘積的方法。讓我們來看看下面這個例子:
0、1、2、3、4、5、6、7 、8 、9 、10 、11 、12 、13 、14 、……
1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……
這兩行數字之間的關系是極為明確的:第一行表示2的指數,第二行表示2的對應冪。如果我們要計算第二行中兩個數的乘積,可以通過第一行對應數字的加和來實現。
比如,計算64×256的值,就可以先查詢第一行的對應數字:64對應6,256對應8;然后再把第一行中的對應數字加和起來:6+8=14;第一行中的14,對應第二行中的16384,所以有:64×256=16384。
納皮爾的這種計算方法,實際上已經完全是現代數學中“對數運算”的思想了。回憶一下,我們在中學學習“運用對數簡化計算”的時候,采用的不正是這種思路嗎:計算兩個復雜數的乘積,先查《常用對數表》,找到這兩個復雜數的常用對數,再把這兩個常用對數值相加,再通過《常用對數的反對數表》查出加和值的反對數值,就是原先那兩個復雜數的乘積了。這種“化乘除為加減”,從而達到簡化計算的思路,不正是對數運算的明顯特征嗎?
經過多年的探索,納皮爾男爵于1614年出版了他的名著《奇妙的對數定律說明書》,向世人公布了他的這項發明,并且解釋了這項發明的特點。
所以,納皮爾是當之無愧的“對數締造者”,理應在數學史上享有這份殊榮。偉大的導師恩格斯在他的著作《自然辯證法》中,曾經把笛卡爾的坐標、納皮爾的對數、牛頓和萊布尼茲的微積分共同稱為十七世紀的三大數學發明。法國著名的數學家、天文學家拉普拉斯(PierreSimonLaplace,1749-1827)曾說:對數,可以縮短計算時間,“在實效上等于把天文學家的壽命延長了許多倍”。
[2] 高中數學各板塊解題思想總結
高中數學是一門很關鍵學科,是高考拉分的學科,所以一定要學好數學,掌握數學解題思路。下面是小編為大家整理的關于高中數學有效實用的解題思路技巧,希望對您有所幫助!
高中數學解題思路
數形結合
對于高中數學題的解題思路有許多種,但數與形結合是最常用的,因此我們在解答數學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題,因為通過結合圖形能快速的找出一些數學題的解題思路。
分類討論
我們常常會遇到這樣的情況,解到某一步之后,不能再以統一的方法、統一的式子繼續進行下去,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。由于高中數學的變通性強,就會引起分類討論。在分類討論解題時,要做到標準統一,不重不漏。
假設法
(1)對于所求的未知量,先設法構思一個與它有關的'變量;
(2)確認這變量通過無限過程的結果就是所求的未知量;(3)構造函數(數列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。
函數與方程
函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系,運用函數的圖像和性質去分析問題、轉化問題和解決問題;
方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數與方程間的相互轉化。
高中數學解題速度快的方法
鐵律1:
函數或方程或不等式的題目,先直接思考后建立三者的聯系。首先考慮定義域,其次使用“三合一定理”。
鐵律2:
函數或方程或不等式的題目,先直接思考后建立三者的聯系。首先考慮定義域,其次使用“三合一定理”。
鐵律3
面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸或是……
鐵律4:
選擇與填空中出現不等式的題目,優選特殊值法。
鐵律5
求參數的取值范圍,應該建立關于參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法。
鐵律6
恒成立問題或是它的反面,可以轉化為最值問題,注意二次函數的'應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏。
鐵律7
圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式。
鐵律8
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點)。
鐵律9
求橢圓或是雙曲線的離心率,建立關于a、b、c之間的關系等式即可。
鐵律10
三角函數求周期、單調區間或是最值,優先考慮化為一次同角弦函數,然后使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯系的題目,注意向量角的范圍。
鐵律11
數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想。
鐵律12
立體幾何第一問如果是為建系服務的,一定用傳統做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數值的轉化;錐體體積的計算注意系數1/3,而三角形面積的計算注意系數1/2;與球有關的題目也不得不防,注意連接“心心距”創造直角三角形解題。
鐵律13
導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上。
鐵律14
導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上。
鐵律15
遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成。
鐵律16
注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等。
鐵律17
絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義。
鐵律18
與平移有關的,注意口訣“左加右減,上加下減”只用于函數,沿向量平移一定要使用平移公式完成。
鐵律19
關于中心對稱問題,只需使用中點坐標公式就可以,關于軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。
高中數學考場答題方法
1.試卷上有參考公式,80%是有用的,它為你的解題指引了方向;
2.注意題目中的小括號括起來的部分,那往往是解題的關鍵;
3.面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質.如所過的定點,二次函數的對稱軸或是……
4.函數或方程或不等式的題目,先直接思考后建立三者的聯系.首先考慮定義域,其次使用“三合一定理”.
5.如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法;
6.導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
7.選擇與填空中出現不等式的題目,優選特殊值法;
8.與平移有關的,注意口訣“左加右減,上加下減”只用于函數,沿向量平移一定要使用平移公式完成。
[3] 高中數學各板塊解題思想總結
數學作為衡量一個人能力的重要學科,從小學到高中,絕大部分同學在數學這一科投入了大量的時間和精力。然而并非人人都是成功者,有些學生數學成績始終沒有起色,甚至出現倒退,第一個就栽在數學上。這樣導致了不少同學對數學的學習完全失去信心,于是,我對部分同學的數學學習狀態進行了研究,調查,訪問,造成數學成績不好,出現厭學的原因有以下幾個方面:
一被動學習
很多同學進入高中后還依然象初中那樣,有很強的依賴性,跟隨老師的步調一致,沒有掌握學習的主動權,學習不定計劃,課前不預習,坐等上課,對老師講的內容不了解,上課忙于做筆記,不主動積極思考,沒聽到“門道”課后不鞏固,不總結歸納。
二學不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,每天就只是趕做作業,學習一點目的性都沒有,應付老師,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,還有些同學晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
三不重視基礎
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。
四缺乏自主鉆研
高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。如二次函數值的求法,實根分布與參變量的討論,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。有的內容還是初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,就必然會跟不上高中學習的要求。
因此,對學生數學學習心理輔導極為重要,能夠為學生排除其對數學的恐懼,樹立起學好數學的信心,具體做法如下:
一注意對濃厚學習興趣的培養
愛因斯坦曾說:興趣和信心是最好的老師。有了興趣才會滿腔熱情,全身心投入,聰明才干及悟性才會一起涌上心頭,鋪平成功之路,興趣和情緒影響一個人的行為積極性,凡是從事自己感興趣的工作和學習,就會覺得心情舒暢,愉快,激情高漲,效率也高,相反,如果從事自己不感興趣的工作和學習,則心理感到很壓抑,心不在焉,動力不夠,缺乏熱情,效率極低,對于中學生來說他們的學習在很大程度上要受到興趣和情緒的影響。這時培養興趣的最好方法是對學生進行心理輔導。心理輔導的目的是讓學生明確興趣對學習的影響作用,了解自己學習興趣以及怎樣培養對各學科知識學習的興趣,這時可采用講述名人故事與討論,自我檢測與團體活動,數學興趣小組等辦法,通過活動讓學生明白,興趣并非與生俱來,真正的興趣是后來培養得來的。
二注意對良好學習態度的培養
態度是個人對他人,對事物的比較持久的肯定或否定的內在反應傾向,學生學習態度則是學生對學習所持有的肯定或否定的內政反應傾向,它直接影響著學生對學習的定向選擇,對學習肯定態度的學生,有較強的學習愿望和求知欲,他總是積極主動的參與各種學習活動,自覺的投入學習,從而獲得較高的學習效率,體會到成功的喜悅,相反持否定態度的學生則對學習沒有積極性,厭惡,逃避學習,總是消極被迫的接受學習,對學生進行心理輔導要幫助他們排除心理障礙,端正學習態度,使其正確對待學習,輔導可通過老師講故事與學術交流講座,自我測查,學生角色扮演和交流經驗等。通過活動總結只有積極,主動,獨立,認真的學習態度才能高效,深入,鉆研地學習。
三注意對良好學習習慣的培養
反復使用的方法將變成人們的習慣。什么是良好的學習習慣?好的學習習慣包括以下幾個方面。
(1)制定計劃使學習目的明確,時間安排合理,不慌不忙,穩打穩扎,它是推動我們主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。
(2)課前自學是上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。“學然后知不足”,課前自學過的同學上課更能專心聽課,他們知道什么地方該詳,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
(4)及時復習是高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。
(5)獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由“會”到“熟”。
(6)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,并要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
(7)系統小結是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的'目的。經常進行多層次小結,能對所學知識由“活”到“悟”。
(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。課外學習是課內學習的補充和繼續,它不僅能豐富同學們的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展我們的興趣愛好,培養獨立學習和工作的能力,激發求知欲與學習熱情
[4] 高中數學各板塊解題思想總結
(1)合情推理:歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然后提出猜想的推理,稱為合情推理。
①歸納推理:
《ㄒ澹河贍忱嗍澄锏牟糠侄韻缶哂心承┨卣鰨推出該類事物的全部對象都具有這些特征的推理,或者有個別事實概括出一般結論的推理,稱為歸納推理,簡稱歸納。
*歸納是依據特殊現象推斷一般現象,因而,由歸納所得的結論超越了前提所包容的范圍;
*歸納是依據若干已知的、沒有窮盡的現象推斷尚屬未知的現象,因而結論具有猜測性;
*歸納的前提是特殊的情況,因而歸納是立足于觀察、經驗和實驗的基礎之上;
*歸納是立足于觀察、經驗、實驗和對有限資料分析的基礎上,提出帶有規律性的結論。
*對有限的資料進行觀察、分析、歸納整理;
*提出帶有規律性的結論,即猜想;
*檢驗猜想。
②類比推理:
《ㄒ澹河閃嚼嘍韻缶哂欣嗨坪推渲幸煥嘍韻蟮哪承┮閻特征,推出另一類對象也具有這些特征的推理,稱為類比推理,簡稱類比。
*類比是從人們已經掌握了的`事物的屬性,推測正在研究的事物的屬性,是以舊有的認識為基礎,類比出新的結果;
*類比是從一種事物的特殊屬性推測另一種事物的特殊屬性;
*類比的結果是猜測性的不一定可靠,單它卻有發現的功能。
*找出兩類對象之間可以確切表述的相似特征;
*用一類對象的已知特征去推測另一類對象的特征,從而得出一個猜想;
*檢驗猜想。
(2)演繹推理:
①定義:從一般的原理出發,推出某個特殊情況下的結論,這種推理叫演繹推理。
②演繹推理是由一般到特殊的推理;
小前提――所研究的特殊情況;
結 論――根據一般原理,對特殊情況得出的判斷。
④“三段論”推理的依據,用集合的觀點來理解:
若集合M的所有元素都具有性質P,S是M的一個子集,那么S中所有元素也都具有性質P。
(3)合情推理與演繹推理的區別與聯系:
①歸納是由特殊到一般的推理;
②類比是由特殊到特殊的推理;
③演繹推理是由一般到特殊的推理.
④從推理的結論來看,合情推理的結論不一定正確,有待證明;演繹推理得到的結論一定正確。
⑤演繹推理是證明數學結論、建立數學體系的重要思維過程;而數學結論、證明思路的發現,主要靠合情推理.
①綜合法:利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最后推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法,其特點是:“由因導果”。
②分析法:從要證明的結論出發,逐步尋求使它成立的充分條件,直至最后,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法,其特點是:“執果索因”。
③數學歸納法:
時結論正確,證明當n=k+1時結論也正確;
*數學歸納法的兩個步驟缺一不可,用數學歸納法證明問題時必須嚴格按步驟進行;
*數學歸納法公理是證明有關自然數命題的依據。
(2)間接證明(反證法、歸謬法):假設原命題不成立,經過正確的推理,最后得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。
③由于上述矛盾的出現,可以斷言,原來的假定“結論不成立”是錯誤的;
④肯定原來命題的結論是正確的。
即“反設――歸謬――結論”
[5] 高中數學各板塊解題思想總結
數學證明題解題的方法
第一步:結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如20xx年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數學推理是環環相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
第二步:借助幾何意義尋求證明思路。一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如20xx年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯系結論能夠發現:兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個函數取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如20xx年數學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區間內有零點,這就證得所需結果。
高中數學證明題解題方法
一、合情推理
1.歸納推理是由部分到整體,由個別到一般的推理,在進行歸納時,要先根據已知的部分個體,把它們適當變形,找出它們之間的聯系,從而歸納出一般結論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質,則另一個對象也具有類似的性質。在進行類比時,要充分考慮已知對象性質的'推理過程,然后類比推導類比對象的性質。
二、演繹推理
演繹推理是由一般到特殊的推理,數學的證明過程主要是通過演繹推理進行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最后推導出所要證明的結論成立,這種證明方法叫做綜合法(或順推證法、由因導果法)。分析法一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最后,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設原命題不成立,經過正確的推理,最后得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數學歸納法
數學上證明與自然數N有關的命題的一種特殊方法,它主要用來研究與正整數有關的數學問題,在高中數學中常用來證明等式成立和數列通項公式成立。
幾何證明解題技巧
題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計算題,包括棱錐體的體積公式計算、點到面的距離、有關二面角的計算(理科生掌握)解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現成的線存在,這個時候需要我們在面做一條輔助線去跟線平行,一般這條輔助線的作法就是找中點);另一種方法就是過直線作一個平面與面平行即可,輔助面的作法也基本上是找中點。
證面面平行:這類題比較簡單,即證明這兩個平面的兩條相交線對應平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經告訴我們是垂直關系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說直線所在的平面與面是垂直的關系,那么我們需要證明直線垂直面內的兩條相交線即可。
其實說實話,證明垂直的問題都是很簡單的,一般都有什么勾股定理呀,還有更多的是根據一個定理(一條直線垂直于一個面,那么這條直線就垂直這個面的任何一條線)來證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡單,就是需要轉化為證線面垂直即可。
體積和點到面的距離計算:如果是三棱錐的體積要注意等體積法公式的應用,一般情況就是考這個東西,沒有什么難度的,關鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計算:這類型對理科生來說是一個噩夢,其難度有二,第一是首先你要找到二面角在什么地方,另一個難度就是你要知道這個二面角所在直角三角形的邊長分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個面的頂點A出發引向另一個面的垂線,垂足為B,然后過垂足B向這兩個面的交線做垂線,垂足為C,最后將A點與C點連接起來,這樣即為二面角(說白了就是應用三垂線定理來找)
二面角所在直角三角形的邊長求法:一般應用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說一下就是在題目中可能會出現這樣的情況,就是兩個面的相交處是一個點,這個時候需要我們過這個點補充完整兩個面的交線,不知道怎么補交線的跟我說一聲。
[6] 高中數學各板塊解題思想總結
時間過得真快,轉眼又過了一學期。這是忙碌的一學期,也是充實的一學期,收獲的一學期。這一學期我負責高二(6)、(10)兩個班的教學工作。我結合學生的實際情況,有針對性地制訂了教學計劃,使教學工作有計劃,有組織,有步驟地開展,較好地完成了教學任務?,F將本學期教學工作總結如下:
一、充分的課前備課
上好新課的前提是備好課,根據教材內容及學生的實際,精心設計教學過程和擬定教學方法尤為重要,因此,我把備課當作關鍵的關鍵。本學期,我加強了理論學習,特別是學習了中小學常用的教學方法,包括講授法,討論法,直觀演示法,練習法,讀書指導法;而課堂教學常用方法包括講授式的教學方法,問題探究式教學方法,訓練與實踐式教學方法,基于現代信息技術的教學方法。通過學習,這也為我增加了不少自信。我本著“干什么、學什么,缺什么,補什么”的原則,在學期初上新課前,認真研究教材、教參、教案,試題,吃透知識,力求每一課都備的完美。課后,我認真反思,對每節課進行了再備課。
二、高效率的課堂教學
上好課就要抓好每一次課堂教學。在教學中,我注重理清知識的條理和邏輯,堅持每個知識點講清楚,分析透,通過多種方式將課本知識化難為易,不給學生吃夾生飯,增加情景教學,努力增強課堂教學的效果。學習了課堂教學常用方法包括講授式的教學方法,問題探究式教學方法,訓練與實踐式教學方法,基于現代信息技術的教學方法后,在課堂上我有意識選擇去實踐些教學方法。
根據數學課程的特點,實施較多的是講授式的教學方法和問題探究式教學方法,比如概念性課題,一般采用問題探究式教學方法。我在上選修2—1《導數的概念》這一課時,就采用了問題探究式教學方法。新課引入通過提出問題1:上一節課我們的學習跳水問題時知道,平均速度能描述運動員某一時刻的運動狀態嗎?學生作答,得出能描述的是瞬時速度。問題2:如何求運動員的瞬時速度?你能舉例嗎?比如,t=2時的瞬時速度是多少?引導學生閱讀教材p74表格。問題3:⊿t越來越小,當⊿t趨于0時,平均速度v有什么樣的變化趨勢?學生得出當⊿t趨于0時,平均速度都趨近于一個確定的值—13。1,所以,運動員在t=2時的瞬時速度是—13。1m/s。問題4:以上求得瞬時速度的過程體現了一個什么思想?逼近的思想。問題5:你能得出一個什么結論嗎?學生小結:局部以勻速代替變速,以平均速度代替瞬時速度,然后通過取極限,從瞬時速度的近似值過渡到瞬時速度的精確值。問題6:函數f(x)在x=xo處的瞬時變化率怎么樣表示?學生閱讀教材得出函數y y=f(x)在x=xo的導數。知識點講授完后對昨天作業進行講評,同時增加了一問:求它的導數;最后完成了一道練習題。而例題課、練習課則常常采用講授式的教學方法,以教師講,學生練習為主。=f(x)在x=x0處的瞬時變化率是:
三、完善的課后反思
看過一句這樣的話“思之則活,思活則深,思深則透,思透則新,思新則進”。學期初我在中山教師博客和搜狐博客開通了教師博客,把自己的教學反思放到博客上。堅持一學期下來,日志總數為58篇,這都是自己反思的成果,每一篇都反思自己的教學行為,總結教學的得失與成敗,對整個教學過程進行回顧、分析和審視,才能形成自我反思的意識和自我監控的能力,才能不斷豐富自我素養,提升自我發展能力,逐步完善教學藝術,以期實現教師自身的教學水平提升。
一學期來,我的教學工作中取得了一定的成績,個人的教學也有了一點提高,但是與現代教學質量的要求還有不小的距離,自身尚存在一定的不足,如:在教學工作中課堂語言不夠生動等問題,這些問題尚需在今后的教學工作中不斷改進和完善。
[7] 高中數學各板塊解題思想總結
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 準線方程為x=-p/2
由于拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
-
【小學作文網ZwB5.CoM】全網熱議專題:
- 高中數學必修5知識點?|?高中數學知識點全總結:必背公式?|?10篇優秀作文?|?英語作文精選10篇?|?高中數學各板塊解題思想總結?|?高中數學各板塊解題思想總結
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
?萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的'關系 x1+x2=-b/a x1*x2=c/a 注:韋達定理
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫-公式)(p=(a+b+c)/2)
已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標系內A(a,b),B(c,d), C(e,f),這里ABC
| e f 1 |
選區取最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規則取,可能會得到負值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小!】
秦九韶三角形中線面積公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc為三角形的中線長.
17 三角形內角和定理 三角形三個內角的和等于180°
22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
[8] 高中數學各板塊解題思想總結
自xx年畢業以來,已經從事高中數學教學已有幾年了,經歷老人教版教材和新課程高中數學的教學。在不斷的摸索和學習中,我發現自己已經適應了高中數學教學,并且深深喜歡上了數學,不敢說自己有教學上的經驗,但可以說有一些感受。
首先,我覺得數學教學是一項非常有趣而有研究意義的工作。在數學課上,有思維深化,也有正誤辯論,有積極的合作。如今的教學和我們小時接受的教學方式真的是千差萬別,我們機械的模仿和固定的思維已經不能適應現代學生的要求,他們個個使勁渾身解數,在展示自己的個性思維和奇妙方法,像是在演繹精彩而又真實的數學童話故事。不知不覺,挑戰成了孩子們喜歡的學習方式。在學生這種研究的勁頭下,我怎么可能不被感染,也想好好研究一下這門課的教學,樂在其中,努力改變著的傳統的教學方式方法。
其次,第一次接觸高中數學教學,遵循傳統的教學方法,填鴨式的教學模式,教師滿堂講,學生全堂聽,猶如開什么會議似的,幾年過后,幸運的趕上了新課程、新模式、講創新、新時代,現在也在慢慢的摸索中和我班的孩子共同成長,運用新的教學理念和新的教學方法。我就更加謹慎,不說大話,指望我的教法和培養方法能指引學生終生的學習,但愿我的點滴能夠對孩子的發展有一點點的鞭策。在實施新的教學理念的教育教學過程中,我多次嘗試、反思、總結,對高中的教學我已有了初步的研究和很深的體會。
1、放手讓孩子創新,適合他們的年齡階段的創新。
2、教師要教的少,讓學生學的多。
3、小組合作既促進學習,又增進友誼。
4、要讓學生學會“在做中學、在做中練、在做中提高”。
5、“練習時要時刻回顧基本概念,要把回顧基本概念放到練習中去”。
最后,了解學生的心。知己知彼才能百戰不殆,教學上也應如此,只有真正了解學生的心理特點和接受水平,才能采取有效的方法,幫助學生實現真正的學習??偟恼f來,自己懂得數學教學方面的知識還是少了點,不足以滿足教學的需要,以后的工作中還應多學習專業知識,提高自己的專業素養,多研讀教材,深入把握教學核心,用先進的教育理念武裝大腦,是自己成為一個適應現代教育教學!
[9] 高中數學各板塊解題思想總結
做數學題速度慢,不僅會拉長平時作業時間,減少自主學習時間,更會在考試中影響整體做題速度,很可能會做的題也來不及解答。下面是小編為大家整理的關于高中數學學科知識解題技巧,希望對您有所幫助!
高中數學選擇題解題技巧
首先,要認真審題。做題時忌諱的就是不認真讀題,埋頭苦算,結果不但浪費了大量的時間,甚至有時候還選錯,結果事倍功半。所以一定要讀透題,由題迅速聯想到涉及到的概念,公式,定理以及知識點中要注意的問題。發掘題目中的隱含條件,要去偽存真,領會題目的真正含義。
其次,要注意解題方法。做題時除了按照解答題的思路直接來求以外,還要注意一些特殊的方法,比如說特殊值法,代入法,排除法,驗證法,數形結合法等等。
直接法。有些選擇題本身就是由一些填空題,判斷題,解答題改編而來的,因此往往可采用直接法,直接由概念、公式、定理及性質出發,按照做解答題的方法一步步來求。我們在做解答題時大部分都是采用這種方法。排除法。選擇題因其答案是四選一,必然只有一個正確答案,那么我們就可以采用排除法,從四個選項中排除掉易于判斷是錯誤的答案,那么留下的一個自然就是正確的答案。
驗證法。通過對選擇支的觀察,分析,將各選擇支逐個代入題干中,進行驗證、或適當選取特殊值進行檢驗、或采取其他驗證手段,以判斷選擇支正誤的方法。特殊值法。有些選擇題用常規方法求解比較困難,若根據答案中所提供的信息,選擇某些特殊情況進行分析,或選擇某些特殊值進行計算,或將字母參數換成具體數值代入,把一般形式變為特殊形式,再進行判斷往往十分簡單。
數形結合法。也叫圖象法。有些選擇題用代數方法解計算較繁,但若能根據題意,做出草圖,然后根據圖形的形狀、位置、性質、綜合特征等,由圖形的直觀性得出選擇題的答案。選擇題的解題方法還有很多,但做題時也不要拘泥于固定思維,有時候一道題可采用多種特殊方法綜合運用。還有,在做選擇題的過程中,遇到關鍵性的詞語可用筆做個記號,以引起自己的注意,比如說至少,沒有一個,至多一個等等。第一遍沒做的題也要做個記號,但要注意與其它記號區分開來,這樣不容易遺漏。最后,做完題后要仔細檢查,有沒有遺漏的,有沒有涂錯的,全面認真的再做一遍,可用不同的方法做一下,驗證答案。另外遇到真不會做的,也不要空著不做,一定要選個答案。
高中數學快速解題萬能法
1、熟悉基本的解題步驟和解題方法
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的'解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。
2、審題要認真仔細
對于一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,并從中找出隱含條件。
有些學生沒有養成讀題、思考的習慣,心里著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。
3、創立學科功能的方法
如公理化方法、模型化方法、結構化方法,以及集合論方法、極限方法、坐標方法、向量方法等。在具體的解題中,具有統帥全局的作用。
4、一般思維規律的方法
如觀察、試驗、比較、分類、猜想、類比、聯想、歸納、演繹、分析、綜合等。在具體的解題中,有通性通法、適應面廣的特征,常用于思路的發現與探求。
5、論證演算的方法
這又可以依其適應面分為兩個層次:第一層次是適應面較寬的求解方法,如消元法、換元法、降次法、待定系數法、反證法、同一法、數學歸納法(即遞推法)、坐標法、三角法、數形結合法、構造法、配方法等等;第二層次是適應面較窄的求解技巧,如因式分解法以及因式分解里的“裂項法”、函數作圖的“描點法”、以及三角函數作圖的“五點法”、幾何證明里的“截長補短法”、“補形法”、數列求和里的“裂項相消法”等。
6、“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急于解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。
7、提高解選擇題的速度、填空題的準確
數學選擇題是知識靈活運用,解題要求是只要結果、不要過程。因此,逆代法、估算法、特例法、排除法、數形結合法……盡顯威力。12個選擇題,若能把握得好,容易的一分鐘一題,難題也不超過五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準、巧”,忌諱“小題大做”。填空題也是只要結果、不要過程,因此要力求“完整、嚴密”。
高中數學考場答題原則
(1)先易后難 一般來說,選擇題的最后一題,填空題的最后一題,解答題的后兩題是難題.當然,對于不同的學生來說,有的簡單題目也可能是自己的難題,所以題目的難易只能由自己確定.一般來說,小題思考1分鐘還沒有建立解答方案,則應采取“暫時性放棄”,把自己可做的題目做完再回頭解答.
(2)小題有法 選擇題有其獨特的解答方法,首先重點把握選擇支也是已知條件,利用選擇支之間的關系可能使你的答案更準確.切記不要“小題大做”. 另外,答完選擇題后即可填涂答題卡,切記最后不要留空,實在不會的,要采用猜測、憑第一感覺(四個選項中正確答案的數目不會相差很大,選項C出現的機率較大,難題的答案常放在A、B兩個選項中)等方法選定答案.
(3)規范答題
(4)最大得分
(5)答題順序
(6)放棄原則
[10] 高中數學各板塊解題思想總結
集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然后穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。
3、尋求中間環節,挖掘隱含條件:
在些結構復雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經過適當組合抽去中間環節而構成的。
因此,從題目的因果關系入手,尋求可能的中間環節和隱含條件,把原題分解成一組相互聯系的系列題,是實現復雜問題簡單化的一條重要途徑。
4、分類考察討論:
在些數學題,解題的復雜性,主要在于它的條件、結論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當的分類標準,把原題分解成一組并列的簡單題,有助于實現復雜問題簡單化。
5、簡單化已知條件:
有些數學題,條件比較抽象、復雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至暫時撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。
6、恰當分解結論:
有些問題,解題的主要困難,來自結論的抽象概括,難以直接和條件聯系起來,這時,不妨猜想一下,能否把結論分解為幾個比較簡單的部分,以便各個擊破,解出原題。
數學高考題的容量在120分鐘時間內完成大小26個題,時間很緊張,不允許做大量細致的解后檢驗,所以要盡量準確運算(關鍵步驟,力求準確,寧慢勿快),立足一次成功。解題速度是建立在解題準確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟,假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”?!皶鴮懸ふ?,卷面能得分”講的也正是這個道理。
-
我們精彩推薦高中數學各板塊解題思想總結專題,靜候訪問專題:高中數學各板塊解題思想總結
