<nav id="efrwd"></nav>

  • <wbr id="efrwd"></wbr>

      導航欄 ×
      你的位置: 作文網 > 優秀作文 > 導航

      高中數學必修5知識點

      發表時間:2025-05-27

      高中數學必修5知識點(集錦十三篇)。

      高中數學必修5知識點 篇1

      1、數列概念

      ①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集Nx或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。

      ②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a、列表法;b、圖像法;c、解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。

      ③函數不一定有解析式,同樣數列也并非都有通項公式。

      等差數列

      1、等差數列通項公式

      an=a1+(n—1)d

      n=1時a1=S1

      n≥2時an=Sn—Sn—1

      an=kn+b(k,b為常數)推導過程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b

      2、等差中項

      由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

      有關系:A=(a+b)÷2

      3、前n項和

      倒序相加法推導前n項和公式:

      Sn=a1+a2+a3+·····+an

      =a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①

      Sn=an+an—1+an—2+······+a1

      =an+(an—d)+(an—2d)+······+[an—(n—1)d]②

      由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

      ∴Sn=n(a1+an)÷2

      等差數列的'前n項和等于首末兩項的和與項數乘積的一半:

      Sn=n(a1+an)÷2=na1+n(n—1)d÷2

      Sn=dn2÷2+n(a1—d÷2)

      亦可得

      a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

      an=2sn÷n—a1

      有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

      4、等差數列性質

      一、任意兩項am,an的關系為:

      an=am+(n—m)d

      它可以看作等差數列廣義的通項公式。

      二、從等差數列的定義、通項公式,前n項和公式還可推出:

      a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx

      三、若m,n,p,q∈Nx,且m+n=p+q,則有am+an=ap+aq

      四、對任意的k∈Nx,有

      Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數列。

      等比數列

      1、等比中項

      如果在a與b中間插入一個數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。

      有關系:

      注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

      2、等比數列通項公式

      an=a1xq’(n—1)(其中首項是a1,公比是q)

      an=Sn—S(n—1)(n≥2)

      前n項和

      當q≠1時,等比數列的前n項和的公式為

      Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

      當q=1時,等比數列的前n項和的公式為

      Sn=na1

      3、等比數列前n項和與通項的關系

      an=a1=s1(n=1)

      an=sn—s(n—1)(n≥2)

      4、等比數列性質

      (1)若m、n、p、q∈Nx,且m+n=p+q,則am·an=ap·aq;

      (2)在等比數列中,依次每k項之和仍成等比數列。

      (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

      (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

      記πn=a1·a2…an,則有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

      另外,一個各項均為正數的等比數列各項取同底指數冪后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

      (5)等比數列前n項之和Sn=a1(1—q’n)/(1—q)

      (6)任意兩項am,an的關系為an=am·q’(n—m)

      (7)在等比數列中,首項a1與公比q都不為零。

      注意:上述公式中a’n表示a的n次方。

      數學三角形斜邊計算公式

      斜邊是指直角三角形中最長的那條邊,也指不是構成直角的那條邊。在勾股定理中,斜邊稱作“弦”。

      三角形斜邊長等于根號下兩直角邊的平方和,即斜邊c=√(a^2+b^2)

      解答過程如下:

      (1)在直角三角形中滿足勾股定理—在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等于斜邊長的平方。數學表達式:a2+b2=c2

      (2)a2+b2=c2求c,因為c是一條邊,所以就是求大于0的一個根。即c=√(a2+b2)。

      在幾何中,斜邊是直角三角形的最長邊,與直角相對。直角三角形的斜邊的長度可以使用畢達哥拉斯定理找到,該定理表示斜邊長度的平方等于另外兩邊長度的平方和。例如,如果其中一方的長度為3(平方,9),另一方的長度為4(平方,16),那么它們的正方形加起來為25。斜邊的長度為平方根25,即5。

      提高數學成績的竅門是什么

      找漏洞

      學生如何找自己學科上的漏洞呢?主要就是要在預習時找漏洞。上課學生的學習目標明確,注意力才會集中,聽課效率才會高。除了預習,做題也是一種很好的找漏洞的方式。

      多做題不等于提高分數,只有多補漏洞,才能提高分數

      題目千千萬,我們是做不完的。做題的是為了掌握、鞏固知識點,如果已經掌握了,就沒有必要再做了。學生應該把時間放在補漏洞上,預習也要引起高度重視。

      不要輕易放過一道錯題

      對于學生錯誤的習題,教師會講評一遍,學生更正一遍之后就了事,但這種態度是不正確的。從哪里倒下就在哪里爬起來,“錯題是個寶,天天少不了,每天都在找,積累為大考。”這就要求學生反思三點,一、問題到底出在哪里?二、產生錯誤的根本是什么?三、如何做才能避免下次犯同樣的錯誤?如果每道錯題都利用好的,還怕成績不能提高嗎?

      落實的關鍵是檢測和重復

      落實就是硬道理??醋约貉a漏洞的效果如何最好的方式就是檢測,多次檢測沒有問題了,那么這個漏洞就不上了。補漏洞也不是一次、兩次就能解決,需要一定的重復。

      既要“亡羊補牢”,更要“未雨綢繆”

      考試后,教師逐題分析錯題、失分原因——找漏洞;制定切實有效的改進措施——想辦法;有針對性地加強專項訓練——補漏洞。有時“亡羊補牢”已經晚了,我們更應該“未雨綢繆”。每天把學習上的問題記錄下來并解決落實好。考前的模擬測試,也是一個好辦法。

      高中數學必修5知識點 篇2

      知識點概述

      本節包括集合的概念、集合元素的特性、集合的表示方法、常見的特殊集合、集合的分類和集合間的基本關系等知識點,除了集合的表示方法中的描述法較難理解,其它的都多是好理解的知識,只需加強記憶。

      知識點總結

      方法:常用數軸或韋恩圖進行集合的交、并、補三種運算

      1、包含關系子集

      注意:有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

      反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA

      2、不含任何元素的集合叫做空集,記為

      規定:空集是任何集合的子集,空集是任何非空集合的真子集

      3、相等關系(55,且55,則5=5)

      實例:設A={xx2—1=0}B={—11}元素相同

      結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

      常見考點考法

      集合是學習函數的基礎知識,在段考和高考中是必考內容。在段考中多考查集合間的子集和真子集關系,在高考中也是不可少的考查內容,多以選擇題和填空題的形式出現,經常出現在選擇填空題的前幾小題,難度不大。主要與函數和方程、不等式聯合考查的集合的表示方法和集合間的基本關系。

      常見誤區提醒

      1、集合的關系問題,有同學容易忽視空集這個特殊的集合,導致錯解??占侨魏渭系淖蛹侨魏畏强占系恼孀蛹?。

      2、集合的運算要注意靈活運用韋恩圖和數軸,這實際上是數形結合的思想的具體運用。

      3、集合的運算注意端點的取等問題。最好是直接代入原題檢驗。

      4、集合中的元素具有確定性、互異性和無序性三個特征,尤其是確定性和互異性。在解題中,要注意把握與運用,例如在解答含有參數問題時,千萬別忘了檢驗,否則很可能會因為不滿足互異性而導致結論錯誤。

      高中數學必修5知識點 篇3

      數列

      1、數列的定義及數列的通項公式:

      ① an?f(n),數列是定義域為N

      的函數f(n),當n依次取1,2,???時的一列函數值② i。歸納法

      若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?

      ?Sn?f(an)

      iv。若Sn?f(an),先求a

      1?得到關于an?1和an的遞推關系式

      S?f(a)n?1?n?1?Sn?2an?1

      例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

      ?Sn?1?2an?1?1

      2、等差數列:

      ①定義:a

      n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時,an為關于n的一次函數;

      d>0時,an為單調遞增數列;d0時,等差數列中的數隨項數的增大而增大;當dm),則S=(a-b).

      ⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.

      ⑺記等差數列{a}的前n項和為S.①若a>0,公差d0,則當a≤0且a≥0時,S最小.

      高中數學必修5知識點 篇4

      【差數列的基本性質】

      ⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d。

      ⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd。

      ⑶若{a}、為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列。

      ⑷對任何m、n,在等差數列{a}中有:a=a+(n—m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性、

      ⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那么當{a}為等差數列時,有:a+a+a+…=a+a+a+…。

      ⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差)。

      ⑺如果{a}是等差數列,公差為d,那么,a,a,…,a、a也是等差數列,其公差為—d;在等差數列{a}中,a—a=a—a=md、(其中m、k、)

      ⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前后兩項的等差中項。

      ⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當dm),則S=(a—b)。

      ⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a—)上。

      ⑺記等差數列{a}的前n項和為S、①若a>0,公差d0,則當a≤0且a≥0時,S最小。

      【等比數列的基本性質】

      ⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q(m為等距離的項數之差)。

      ⑵對任何m、n,在等比數列{a}中有:a=a·q,特別地,當m=1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性。

      ⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數,且t+k,p,…,m+…=m+n+r+…(兩邊的自然數個數相等),那么當{a}為等比數列時,有:a、a、a、…=a、a、a、…。

      ⑷若{a}是公比為q的等比數列,則{|a|}、{a}、{ka}、也是等比數列,其公比分別為|q|}、{q}、{q}、。

      ⑸如果{a}是等比數列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數列。

      ⑹如果{a}是等比數列,那么對任意在n,都有a·a=a·q>0。

      ⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等于這兩個數列的公比的積。

      ⑻當q>1且a>0或00且01時,等比數列為遞減數列;當q=1時,等比數列為常數列;當q0,則a可以是任意實數;

      排除了為0這種可能,即對于x0的所有實數,q不能是偶數;

      排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

      指數函數

      指數函數

      (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

      (2)指數函數的值域為大于0的實數集合。

      (3)函數圖形都是下凹的。

      (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

      (5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

      (6)函數總是在某一個方向上無限趨向于X軸,永不相交。

      (7)函數總是通過(0,1)這點。

      (8)顯然指數函數無界。

      奇偶性

      定義

      一般地,對于函數f(x)

      (1)如果對于函數定義域內的任意一個x,都有f(—x)=—f(x),那么函數f(x)就叫做奇函數。

      (2)如果對于函數定義域內的任意一個x,都有f(—x)=f(x),那么函數f(x)就叫做偶函數。

      (3)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

      (4)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

      高中數學必修5知識點 篇5

      數學知識點1

      柱、錐、臺、球的結構特征

      (1)棱柱:

      幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

      截面距離與高的比的平方。

      (3)棱臺:

      幾何特征:

      ①上下底面是相似的平行多邊形

      ②側面是梯形

      ③側棱交于原棱錐的頂點

      (4)圓柱:定義:以矩形的一邊所在的`直線為軸旋轉,其余三邊旋轉所成

      幾何特征:

      ①底面是全等的圓;

      ②母線與軸平行;

      ③軸與底面圓的半徑垂直;

      ④側面展開圖

      是一個矩形。

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

      幾何特征:

      ①底面是一個圓;

      ②母線交于圓錐的頂點;

      ③側面展開圖是一個扇形。

      (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

      幾何特征:

      ①上下底面是兩個圓;

      ②側面母線交于原圓錐的頂點;

      ③側面展開圖是一個弓形。

      (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

      幾何特征:

      ①球的截面是圓;

      ②球面上任意一點到球心的距離等于半徑。

      數學知識點2

      空間幾何體的三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

      注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

      數學知識點3

      空間幾何體的直觀圖——斜二測畫法

      斜二測畫法特點:

      ①原來與x軸平行的線段仍然與x平行且長度不變;

      ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

      高中數學必修5知識點 篇6

      重點知識歸納、總結

      (1)集合的分類

      (2)集合的運算

      ①子集,真子集,非空子集;

      ②A∩B={∈A且x∈B}

      ③A∪B={∈A或x∈B}

      ④A={∈S且xA},其中AS.

      2、不等式的解法

      (1)含有絕對值的不等式的解法

      ①x0)-a

      x>a(a>0)x>a,或x<-a.

      ②f(x)

      f(x)>g(x)f(x)>g(x)或f(x)<-g(x).

      ③f(x)

      ④對于含有兩個或兩個以上的絕對值符號的絕對值不等式,利用“零點分段討論法”去絕對值.如解不等式:x+3-2x-1<3x+2.

      3、簡易邏輯知識

      邏輯聯結詞“或”、“且”、“非”是判斷簡單合題與復合命題的依據;真值表是由簡單命題和真假判斷復合命題真假的依據,理解好四種命題的關系,對判斷命題的真假有很大幫助;掌握好反證法證明問題的步驟。

      (2)復合命題的真值表

      非p形式復合命題的真假可以用下表表示.

      p非p

      真假

      假真

      p且q形式復合命題的真假可以用下表表示.

      p或q形式復合命題的真假可以用下表表示.

      (3)四種命題及其相互之間的關系

      一個命題與它的逆否命題是等價的.

      (4)充分、必要條件的判定

      ①若pq且qp,則p是q的充分不必要條件;

      ②若pq且qp,則p是q的必要不充分條件;

      ③若pq且qp,則p是q的充要條件;

      ④若pq且qp,則p是q的既不充分也不必要條件.

      高中數學必修5知識點 篇7

      一、集合間的關系

      1.子集:如果集合A中所有元素都是集合B中的元素,則稱集合A為集合B的子集。

      2.真子集:如果集合AB,但存在元素a∈B,且a不屬于A,則稱集合A是集合B的真子集。

      3.集合相等:集合A與集合B中元素相同那么就說集合A與集合B相等。

      子集:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含于B”(或“B包含A”),這時我們說集合是集合的子集,更多集合關系的知識點見集合間的基本關系

      二、集合的運算

      1.并集

      并集:以屬于A或屬于B的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

      2.交集

      交集:以屬于A且屬于B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

      3.補集

      三、高中數學集合知識歸納:

      1.集合的有關概念。

      1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

      注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

      ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

      ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

      2)集合的表示方法:常用的有列舉法、描述法和圖文法

      3)集合的分類:有限集,無限集,空集。

      4)常用數集:N,Z,Q,R,N*

      2.子集、交集、并集、補集、空集、全集等概念。

      1)子集:若對x∈A都有x∈B,則AB(或AB);

      2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

      3)交集:A∩B={x|x∈A且x∈B}

      4)并集:A∪B={x|x∈A或x∈B}

      5)補集:CUA={x|xA但x∈U}

      注意:①?A,若A≠?,則?A;

      ②若,,則;

      ③若且,則A=B(等集)

      3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

      4.有關子集的幾個等價關系

      ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

      ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

      5.交、并集運算的性質

      ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

      ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

      6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

      四、數學集合例題講解:

      【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系

      A)M=NPB)MN=PC)MNPD)NPM

      分析一:從判斷元素的共性與區別入手。

      解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}

      對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以MN=P,故選B。

      分析二:簡單列舉集合中的元素。

      解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

      =∈N,∈N,∴MN,又=M,∴MN,

      =P,∴NP又∈N,∴PN,故P=N,所以選B。

      點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

      變式:設集合,,則(B)

      A.M=NB.MNC.NMD.

      解:

      當時,2k+1是奇數,k+2是整數,選B

      【例2】定義集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

      A)1B)2C)3D)4

      分析:確定集合A*B子集的個數,首先要確定元素的個數,然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

      解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

      變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數為

      A)5個B)6個C)7個D)8個

      變式2:已知{a,b}A{a,b,c,d,e},求集合A.

      解:由已知,集合中必須含有元素a,b.

      集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

      評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.

      【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

      解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

      ∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

      ∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,

      ∴∴

      變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

      解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

      ∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

      又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

      ∴b=-4,c=4,m=-5

      【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

      分析:先化簡集合A,然后由A∪B和A∩B分別確定數軸上哪些元素屬于B,哪些元素不屬于B。

      解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

      綜合以上各式有B={x|-1≤x≤5}

      變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

      點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

      變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

      解答:M={-1,3},∵M∩N=N,∴NM

      ①當時,ax-1=0無解,∴a=0②

      綜①②得:所求集合為{-1,0,}

      【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

      分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數分離求解。

      解答:(1)若,在內有有解

      令當時,

      所以a>-4,所以a的取值范圍是

      變式:若關于x的方程有實根,求實數a的取值范圍。

      解答:

      點評:解決含參數問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的'關鍵。

      高中數學必修5知識點 篇8

      (一)、映射、函數、反函數

      1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

      2、對于函數的概念,應注意如下幾點:

      (1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數。

      (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式。

      (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數。

      3、求函數y=f(x)的反函數的一般步驟:

      (1)確定原函數的值域,也就是反函數的定義域;

      (2)由y=f(x)的解析式求出x=f—1(y);

      (3)將x,y對換,得反函數的習慣表達式y=f—1(x),并注明定義域。

      注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起。

      ②熟悉的應用,求f—1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算。

      (二)、函數的解析式與定義域

      1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域。求函數的定義域一般有三種類型:

      (1)有時一個函數來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;

      (2)已知一個函數的解析式求其定義域,只要使解析式有意義即可。如:

      ①分式的分母不得為零;

      ②偶次方根的被開方數不小于零;

      ③對數函數的真數必須大于零;

      ④指數函數和對數函數的底數必須大于零且不等于1;

      ⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等。

      應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。

      (3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可。

      已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

      2、求函數的解析式一般有四種情況。

      (1)根據某實際問題需建立一種函數關系時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式。

      (2)有時題設給出函數特征,求函數的解析式,可采用待定系數法。比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可。

      (3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數的定義域。

      (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。

      (三)、函數的值域與最值

      1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

      (1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。

      (2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。

      (3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。

      (4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。

      (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

      (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

      (7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。

      (8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。

      2、求函數的最值與值域的區別和聯系

      求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最?。ù螅?,這個數就是函數的最?。ù螅┲?。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

      如函數的值域是(0,16],值是16,無最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2??梢姸x域對函數的值域或最值的影響。

      3、函數的最值在實際問題中的應用

      函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最?。钡戎T多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。

      (四)、函數的奇偶性

      1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數)。

      正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關于原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數定義域上的整體性質)。

      2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:

      注意如下結論的運用:

      (1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

      (2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

      (3)奇偶函數的復合函數的奇偶性通常是偶函數;

      (4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

      3、有關奇偶性的幾個性質及結論

      (1)一個函數為奇函數的充要條件是它的圖象關于原點對稱;一個函數為偶函數的充要條件是它的圖象關于y軸對稱。

      (2)如要函數的定義域關于原點對稱且函數值恒為零,那么它既是奇函數又是偶函數。

      (3)若奇函數f(x)在x=0處有意義,則f(0)=0成立。

      (4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。

      (5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(—x)是偶函數,G(x)=f(x)—f(—x)是奇函數。

      (6)奇偶性的推廣

      函數y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數。函數y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。

      學好數學的方法

      學好數學第一要養成預習的習慣。這是我多年學習數學的一個好方法,因為提前把老師要講的知識先學一遍,就知道自己哪里不會,學的時候就有重點。當然,如果完全自學就懂更好了。

      第二是書后做練習題。預習完不是目的,有時間可以把例題和課后練習題做了,檢查預習情況,如果都會做說明學會了,即使不會還能再聽老師講一遍。

      第三個步驟是做老師布置的作業,認真做。做的時候可以把解題過程直接寫在題目旁邊,比如選擇題和填空題,因為解答題有很多空白處可寫。這樣做的好處就是,老師講題時能跟上思路,不容易走神。

      第四個學好數學的方法是整理錯題。每次考試結束后,總會有很多錯題,對于這些題目,我們不要以為上課聽懂了就會做了,看花容易繡花難,親手做過了才知道會不會。而且要把錯的題目對照書本去看,重新學習知識。

      第五個提高數學成績的方法是查缺補漏。在做了大量習題以后,數學成績有所提高,但還是存在一些不會做的題目,我們要善于發現哪些類型的題目還存在盲區,然后逐一擊破。

      下一個方法是提高數學分數段。可能數學學了一段時間,成績老是上不去,這是要總結差在哪里?基礎題還是拔高題,然后對自己提出高要求,基礎題目爭取不丟分,然后做一些有難度的題目。

      第七個數學提分方法是掌握一些數學解題思路。數學很多題目都是有固定的或者是多種解題思想的,大家要善于發現和總結,比如歸納法、分類討論法等等。

      第八個學好數學的方法是“鉆”。當遇到難題百思不得其解時,學霸們的做法通常是思考一兩天,而學酥的做法則是一掃而過,其中的差別已經很明顯了,這也是成績差異的原因所在。

      要想提高數學分數,最明智的做法是,考試遇到不會的題目先放過去,做完其他題目再回過頭來重新做難題。但不能連著放過去好幾道題目,那就有問題了。

      最后一個提分方法就是合理安排答題時間,規定做選擇題和大題各多長時間,然后按照既定時間去做,這樣才能最有效的提高數學分數。

      數學集合知識點

      1、集合的含義

      2、集合的中元素的三個特性:

      (1)元素的確定性如:世界上最高的山

      (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

      (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

      3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

      (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      注意:常用數集及其記法:

      非負整數集(即自然數集)記作:N

      正整數集N_或N+整數集Z有理數集Q實數集R

      1)列舉法:{a,b,c……}

      2)描述法:將集合中的元素的公共屬性描述出來,寫在大

      括號內表示集合的方法。{x∈R|x—3>2},{x|x—3>2}

      3)語言描述法:例:{不是直角三角形的三角形}

      4)Venn圖:

      4、集合的分類:

      (1)有限集含有有限個元素的集合

      (2)無限集含有無限個元素的集合

      (3)空集不含任何元素的集合例:{x|x2=—5}

      高中數學必修5知識點 篇9

      藝術班的教學和其它非藝術班的教學有很大的不同,學生既要學習文化知識,又要學習專業科知識.時間非常緊張,并且文化科知識的學習肯定會受很大的影響,所以大部分學生的基礎也很薄弱.在這種情況下怎樣在有限的時間里能比較快的提高成績呢我和我們數學備課組全體老師群策群力想了好多辦法和措施來解決上述問題,具體做法如下:

      一,團結協作,發揮集體力量.高三數學備課組,在資料的征訂,測試題的命題,改卷中發現的問題交流,學生學習數學的狀態等方面上,既有分工又有合作,既有統一要求又有各班實際情況,既有"學生容易錯誤"地方的交流又有典型例子的討論,既有課例的探討又有信息的交流.在任何地方,任何時間都有我們探討,爭議,交流的聲音.

      二,掌握學情,做到有的放矢.深入學生中去了解學生的實際學習情況,學習水平和學習能力,在第一次測試中,學習成績比估計要高,此時及時調動教學內容,加大課堂容量,提前滲透數學思想方法,使教師的教和學生的學都是符合學生的學習實際情況,做到了有的放矢,讓每一位同學在課堂學習中得到屬于自己的收益.

      三,關愛學生,激起學習激情. 熱愛學生,走近學生,哪怕是一句簡單的鼓勵的話,都能激起學生學習數學的興趣,進而激活學習數學的思維.

      四,抓好"三中",樹立學習信心.抓好"三中"即中等題,中等分,中等生,對學生來說認真研究好中等題,拿好中等分是基本,是高考信心的保證;抓好中等生是全面提高教學質量的根本.

      五,注重"三點",培養學習習慣.高三復習注意到低起點,重探究,求能力的同時,還注重抓住分析問題,解決問題中的信息點,易錯點,得分點,培養良好的審題,解題習慣,養成規范作答,不容失分的習慣.

      六,"內臨""外界",關注全體學生.認真分析數學臨界內的臨界生和臨界外的臨界生的學習數學的狀態,采用分層管理和分層教學.比如說每次測試都能在90分以上的同學,應給他們以自由度,課后可做一些適合自己的題目.對一些優秀學生,我們采用了科組集體力量或聘請外來教師加強提高輔導,能進能出,激起學生的競爭意識,增強有效性;對一些數學"學困生",采用了低起點,先享受一下成功,然后不斷深入提高,以致達到適合自己學習情況的進步和提高.

      七,心理教育,助長學習成績.學好數學,除了智力因素以外,還有非智力因素特別是心理方面,一些同學害怕學不好數學,或者以前數學成績一直下好,現在也一定學不好等,我們采用了個別交流學習方法,學習心得等,告訴學生只要做好老師上課講解的,課后加強領會,總結,一定會有進步的,不斷關懷,幫助,指導,學生積極性提高,問的問題也多了起來,學習成績也漸漸提高了.

      高中數學必修5知識點 篇10

      (一)解三角形:

      1、正弦定理:在中,、分別為角、的對邊,,則有

      (為的外接圓的半徑)

      2、正弦定理的變形公式:①,,;

      ②,,;③;

      3、三角形面積公式:.

      4、余弦定理:在中,有,推論:

      (二)數列:

      1.數列的有關概念:

      (1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函數。

      (2)通項公式:數列的第n項an與n之間的函數關系用一個公式來表示,這個公式即是該數列的通項公式。如:。

      (3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數列的遞推公式。

      如:。

      2.數列的表示方法:

      (1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

      (3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

      3.數列的分類:

      4.數列{an}及前n項和之間的關系:

      高中數學必修5知識點 篇11

      1.等差數列通項公式

      an=a1+(n-1)d

      n=1時a1=S1

      n≥2時an=Sn-Sn-1

      an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

      2.等差中項

      由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

      有關系:A=(a+b)÷2

      3.前n項和

      倒序相加法推導前n項和公式:

      Sn=a1+a2+a3+·····+an

      =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

      Sn=an+an-1+an-2+······+a1

      =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

      由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

      ∴Sn=n(a1+an)÷2

      等差數列的前n項和等于首末兩項的和與項數乘積的一半:

      Sn=n(a1+an)÷2=na1+n(n-1)d÷2

      Sn=dn2÷2+n(a1-d÷2)

      亦可得

      a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

      an=2sn÷n-a1

      有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

      4.等差數列性質

      一、任意兩項am,an的關系為:

      an=am+(n-m)d

      它可以看作等差數列廣義的通項公式。

      二、從等差數列的定義、通項公式,前n項和公式還可推出:

      a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

      三、若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq

      四、對任意的k∈N_有

      Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

      高中數學必修5知識點 篇12

      數列

      1、數列的定義及數列的通項公式:

      ① an?f(n),數列是定義域為N

      的函數f(n),當n依次取1,2,???時的'一列函數值② i。歸納法

      若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?

      ?Sn?f(an)

      iv。若Sn?f(an),先求a

      1?得到關于an?1和an的遞推關系式

      S?f(a)n?1?n?1?Sn?2an?1

      例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

      ?Sn?1?2an?1?1

      2、等差數列:

      ①定義:a

      n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時,an為關于n的一次函數;

      d>0時,an為單調遞增數列;d<0時,a

      n為單調遞減數列。

      n(n?1)2

      ③前n?na1?

      d,

      d?0時,Sn是關于n的不含常數項的一元二次函數,反之也成立。

      ④性質:ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:

      ①定義:

      an?1an

      ?q(常數),是證明數列是等比數列的重要工具。

      a?b2

      ②通項時為常數列)。

      ③。前n項和

      需特別注意,公比為字母時要討論。

      高中數學必修5知識點 篇13

      (一)解三角形:

      1、正弦定理:在中,、分別為角、的對邊,,則有

      (為的外接圓的半徑)

      2、正弦定理的變形公式:①,,;

      ②,,;③;

      3、三角形面積公式:.

      4、余弦定理:在中,有,推論:

      (二)數列:

      1.數列的有關概念:

      (1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函數。

      (2)通項公式:數列的第n項an與n之間的函數關系用一個公式來表示,這個公式即是該數列的通項公式。如:。

      (3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數列的遞推公式。

      如:。

      2.數列的表示方法:

      (1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

      (3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

      3.數列的分類:

      jizzxxxx中国